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ABSTRACT

The launch of NOAA’s latest generation of geostationary satellites known as the Geostationary

Operational Environmental Satellite (GOES)-R Series has opened new opportunities in quantifying

precipitation rates. Recent efforts have strived to utilize these data to improve space-based precipitation

retrievals. The overall objective of the present work is to carry out a detailed error budget analysis of the

improved Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) algorithm for GOES-R and

the passive microwave (MW) combined (MWCOMB) precipitation dataset used to calibrate it with an

aim to provide insights regarding strengths and weaknesses of these products. This study systematically

analyzes the errors across different climate regions and also as a function of different precipitation types

over the conterminous United States. The reference precipitation dataset is Ground-Validation Multi-Radar

Multi-Sensor (GV-MRMS). Overall, MWCOMB reveals smaller errors as compared to SCaMPR.

However, the analysis indicated that that the major portion of error in SCaMPR is propagated from the

MWCOMB calibration data. The major challenge starts with poor detection from MWCOMB, which

propagates in SCaMPR. In particular, MWCOMB misses 90% of cool stratiform precipitation and the

overall detection score is around 40%. The ability of the algorithms to quantify precipitation amounts for

the Warm Stratiform, Cool Stratiform, and Tropical/Stratiform Mix categories is poor compared to the

Convective and Tropical/Convective Mix categories with additional challenges in complex terrain regions.

Further analysis showed strong similarities in systematic and random error models with both products. This

suggests that the potential of high-resolutionGOES-R observations remains underutilized in SCaMPR due

to the errors from the calibrator MWCOMB.

1. Introduction

Precipitation is undeniably one of the important

components of various environmental cycles, in par-

ticular, the water cycle. Quantifying precipitation is

vital to understand and model various components of

these cycles. Given the dearth of dense and uniform

ground observational networks on Earth, quantita-

tive precipitation estimations (QPEs) derived from

the vantage point of space provide the best option at

the global scale. QPEs with low latency and at high spa-

tiotemporal resolutions are critical for near-real-time

applications such as rapid monitoring and forecast-

ing of high-impact societal events like flash floods,

debris flows, and shallow landslides. Such resolution

can be obtained primarily from satellite sensors on

board geostationary Earth orbit (GEO) platforms.
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NOAA’s Advanced Baseline Imager (ABI) sensor on

board the latest generation of Geostationary Operational

Environmental Satellites (GOES-R Series) provides

3 times more spectral channels, 4 times the resolution,

and 5 times faster scanning when compared to its pre-

decessor imager on board previous-generation GOES

(Schmit et al. (2017). This new generation of GEO

sensors has opened new opportunities in quantifying

precipitation rates, specifically in the western United

States where the data from these GEO sensors can

complement the degraded weather radar coverage of

the Weather Service Radar-1988 Doppler (WSR-88D)

network (Gebregiorgis et al. 2018). Along with theABI

sensor on board GOES-16 and GOES-17 satellites,

other new generation GEO sensors include Spinning

Enhanced Visible Infrared Imager (SEVIRI; Meteosat-8,

Meteosat-9, Meteosat-10, Meteosat-11), Multichannel

ScanningUnit-Geostationary (MSU-GS;Electro-LN1–2),

Advanced Himawari Imager (AHI; Himawari-8 and

Himawari-9), Advanced Geosynchronous Radiation

Imager (AGRI; FY-4A), Advanced Meteorological

Imager (AMI; GEO-KOMPSAT-2A), all with more

than 10 spectral channels. These next generation GEO

satellites provide global coverage at very high spatiotem-

poral and spectral resolutions (https://www.goes-r.gov/

users/abiScanModeInfo.html). With this significant

progress in GEO sensor technology, the next generation

of precipitation retrieval algorithms must follow suit.

Recently, several attempts to utilize these datasets aimed

at improving the precipitation retrievals (e.g., Kirstetter

et al. 2018; Kuligowski et al. 2016; Ma et al. 2018; Meyer

et al. 2016; Thies et al. 2008).

The Self-CalibratingMultivariate PrecipitationRetrieval

(SCaMPR; Kuligowski 2002; Kuligowski et al. 2016)

algorithm is the operational precipitation retrieval al-

gorithm for GOES-16/GOES-17. SCaMPR is trained

with passive microwave (PMW) precipitation rate esti-

mates from the Climate Prediction Center (CPC) com-

binedmicrowave (MWCOMB) dataset (Joyce et al. 2004).

While visible/infrared (VIS/IR) sensors on board GEO

platforms are primarily sensitive to the cloud-top prop-

erties indirectly related to surface precipitation rates,

PMW observations sense total cloud water and/or ice

content (depending on the frequencies) and provide in-

formation on integrated water content that enables more

accurate surface precipitation retrievals. MWCOMB

provides global instantaneous estimates with a 15-h time

delay and is also used as a reference for other satellite

precipitation algorithms such as the CPC morphing

algorithm (CMORPH; Joyce et al. 2004).Within SCaMPR,

several statistical models are developed to link ABI

observations and MWCOMB rates in order to detect

and quantify precipitation at a spatial scale of ;2 km at

nadir and 5-min temporal resolution across the conter-

minous United States (CONUS) (15min across North

and South America).

The advancement in algorithms demands the assess-

ment of their performance. Evaluating the accuracy of

satellite precipitation products has always been one of

the primary objectives of the International Precipitation

Working Group (IPWG: http://www.isac.cnr.it/;ipwg/).

This is important not only to advance the products’

utility for various applications and locations, but also to

provide insights regarding strengths and weaknesses to

the algorithm developers. Blended satellite precipita-

tion products [e.g., Integrated Multisatellite Retrievals

for GPM (IMERG), CMORPH] combine precipitation

measurements from PMW and VIS/IR and ensure

consistency by calibrating the GEO-based products at

higher spatiotemporal resolution with PMW estimates.

While the propagation of QPE uncertainty from PMW

precipitation estimates to VIS/IR is of critical signifi-

cance for precipitation estimation from space, this topic

has not been extensively studied in the literature. The

overall objective of the present work is to carry out an

error budget analysis of the new improved SCaMPR

algorithm and its calibrator data MWCOMB. A quality-

controlled radar and gauge-based precipitation dataset

across the CONUS from the Multi-Radar Multi-Sensor

(MRMS) system is used as reference to evaluate both

MWCOMB and SCaMPR algorithms (Zhang et al. 2016).

The CONUS is an important validation site for per-

formance assessment of satellite precipitation products

(e.g., Gebregiorgis et al. 2018; Khan et al. 2018; Kirstetter

et al. 2012, 2014, 2018; Tan et al. 2017) mainly due to the

availability of high-resolution, quality-controlled reference

data and also the large diversity in precipitation types, rates,

and topographic and climatic characteristics. Recently,

Kirstetter et al. (2012, 2014) set up a ground validation

framework across the CONUS for theGlobal Precipitation

Measurement (GPM) mission using quality-controlled

MRMS data called GV-MRMS. GV-MRMS has been

used as reference for several validation, calibration, and al-

gorithm development studies listed previously. GV-MRMS

also provides a precipitation type product used in the

assessment and error budget analysis of SCaMPR and

MWCOMB in this paper. Additionally, Köppen–Geiger

climate classifications are utilized to investigate the

impact of different climatic characteristics on the spatial

distribution of errors across regions (Peel et al. 2007).

Overall, this error budget work is part of an ongoing effort

in exploring the potential of observations from new-

generation GEO sensors for improving the state-of-the-

art precipitation estimation from space, with the ultimate

goal of providing seamless high-resolution and low-latency

precipitation estimates across the CONUS and beyond.
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Section 2 details the dataset and methodology.

Section 3 presents results from the error budget analysis,

and section 4 concludes the article and describes

future steps.

2. Dataset characteristics and methods

a. Multi-Radar Multi-Sensor

The MRMS system integrates approximately 180 op-

erational radar observations and ingests approximately

7000 hourly rain gauge observations, atmospheric model

analyses, and satellite data to generate a suite of severe

weather and QPE products at 0.018 (;1 km) and 2-min

resolution across the CONUS and southern Canada

(Zhang et al. 2016). TheMRMS v11 surface precipitation

rate product is obtained by applying Z–R relationships at

each grid cell based on an automated precipitation type

classification to mosaicked reflectivity fields. The cate-

gories of precipitation types include 1) Warm Stratiform

Rain, 2) Cool Stratiform Rain, 3) Convective Rain, 4)

Tropical–Stratiform Rain Mix, 5) Tropical–Convective

Rain Mix, 6) Hail, and 7) Snow. Kirstetter et al. (2012,

2014) set up a standardized reference for GPM ground

validation based on MRMS (GV-MRMS; Kirstetter

et al. 2018). Highly quality-controlled and gauge-

corrected GV-MRMS precipitation rate and type prod-

ucts are used here as the reference for the summer season

of 2018. Only the most trustworthy data identified with

maximum radar quality index (RQI) are used in the

analysis.

b. SCaMPR and MWCOMB

The newly improved SCaMPR (Kuligowski et al.

2016) is the operational QPE algorithm for the GOES-

R/ABI sensor. SCaMPR derives various indices from

five ABI spectral channel observations to detect and

quantify precipitation using discriminant and multiple

linear regression techniques, respectively. To account

for spatiotemporal variations in the relationship be-

tween cloud-top properties and surface precipitation,

SCaMPR builds models for each cloud type that are

adapted geographically and regularly updated. To mit-

igate false precipitation detections due to subcloud

evaporation, a relative humidity (RH) correction is ap-

plied using numerical weather predictionmodel outputs.

MWCOMB precipitation estimates are used to train the

statistical models linking cloud-top properties and

surface precipitation. The MWCOMB product (CPC

combined microwave dataset; Joyce et al. 2004) inter-

calibrates satellite-based PMW QPEs, and combines

them to generate a gridded precipitation product at

a resolution of 0.088 3 0.088 and 30min. During the

period of study, MWCOMB used only the Advanced

Microwave Sounding Unit (AMSU) or Microwave

Humidity Sounder (MHS) retrievals from the POES

series and the EUMETSAT MetOp series. Being a

remote sensing, space-based QPE product, it is expected

that limitations of MWCOMB, such as underestimation

of precipitation rates generated by warm clouds, propa-

gate in the SCaMPR estimates (Kuligowski et al. 2016).

Note that SCaMPR is available at the native resolution of

the ABI sensor, i.e., ;2km at nadir and 5min across the

CONUS. For uniformity in the following intercompari-

son, both GV-MRMS and SCaMPR precipitation esti-

mates are resampled tomatch the spatiotemporal scale of

the coarser MWCOMB grids.

Table 1 shows the sample sizes with proportion of rain

and no-rain in MWCOMB and aggregated GV-MRMS

and SCaMPR precipitation products. Note that in the

present article the terms ‘‘rain’’ and ‘‘precipitation’’ are

used synonymously given the period of study during the

warm season. A rainy pixel is defined when the precip-

itation rate is greater than 0.01mmh21. ‘‘All rain’’ in-

dicates the sample of pixels where all three products are

defined as rainy. For satellite products, approximately

90% of the matched datasets in all three products is

no-rain while the remaining ;10% is rain.

Table 2 shows the distribution of GV-MRMS valida-

tion sample sizes including ‘‘all rain’’ data across the

eight MRMS precipitation types. A pixel (0.088) is

classified as a particular precipitation type when at least

80% of the MRMS precipitation types belong to the

same precipitation type in the matched pixel; otherwise

it is assigned to the Combined (Comb) category. Most

data points fall under the No-Precipitation type, fol-

lowed by the Comb type of precipitation. Note that the

Comb precipitation type is not analyzed in the present

study. Considering broad precipitation types, Stratiform

(consisting ofWarm Stratiform, Tropical Stratiform/Mix,

and Cool Stratiform) dominates over Convective (con-

sisting of Convective, Tropical Convective/Mix, and

Hail) and Snow occurrence across the CONUS. Within

the stratiform category, the highest proportion is observed

forWarm Stratiform, followed by Tropical Stratiform/Mix

TABLE 1. Validation sample sizes for rain/no-rain classes for

different dataset used in this study. ‘‘All rain’’ is the number of

pixels where all three products have precipitation rates above

0.01 mm h21. Rain 5 precipitation . 0.01 mm h21.

Product Total size Rain No rain

MRMS 18 288 370 2 708 153 (14.81%) 15 580 217 (85.19%)

MWCOMB 18 288 370 1 618 210 (8.85%) 16 670 160 (91.15%)

SCaMPR 18 288 370 1 754 528 (9.59%) 16 533 842 (90.41%)

All rain 711 473 711 473
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and Cool Stratiform. Within the convective category,

Convective has higher occurrences, followed by Tropical

Convective/Mix and Hail. Note that since it is the warm

season, Snow occurrences are least frequent followed by

Hail when compared to other types. Table 2 gives more

details of the sample sizes associated with the different

precipitation types.

The error budget analysis has been carried out con-

sidering the dependence on precipitation types and cli-

mate regions. Climate regions are obtained across the

CONUS from Köppen–Geiger climate classifications

matched with other datasets (Peel et al. 2007). There are

more than 20 Köppen–Geiger climate classes across the

CONUS, which are grouped into six land classes and one

ocean class (Khan et al. 2018). Figure 1 shows the cli-

mate regions and Table 3 indicates the corresponding

sample sizes. Note that regions R1, R2, and R3 (western

CONUS) are complex topography regions and receive

less frequent precipitation compared to other regions in

the eastern part of the CONUS. Table 4 provides the

sample sizes broken down according to both precipita-

tion types and climate regions.While precipitation types

are generally distributed across all regions, most Snow

and Cool Stratiform occurrences are found in climate

regionR5 (northern and high-altitude regions) and parts

of region R2. Across R3 (a complex topography region)

and R1 (an arid desert region) occurrences of Warm

Stratiform precipitation type are found.

The error budget analysis has been carried out by

focusing on the detection and quantification of satellite

precipitation products. Detection is assessed using var-

ious categorical statistics [Eqs. (1)–(4)] computed for

each climate region and precipitation type separately:

probability of detection ðPOD)5
h

h1m
, (1)

false alarm ratio ðFAR)5
f

h1 f
, (2)

bias5
h1 f

h1m
, (3)

Heidke skill score ðHSS)

5
2(hc2 fm)

(h1 f )(f 1 c)1 (h1m)(m1 c)
, (4)

where h, m, f, and c stand for hits, misses, false detec-

tions, and correct rejections by occurrence, respectively.

It is complemented with decomposing the error by volume

as hits, miss, and false rain:

volumetric hit index ðVHI)5
�
n

i51

[(SRE
i
. t&REF

i
. t)]

�
n

i51

[(SRE
i
. t&REF

i
. t)]1�

n

i51

[(SRE
i
# t&REF

i
. t)]

, (5)

volumetricmiss index ðVMI)5
�
n

i51

[(SRE
i
# t&REF

i
. t)]

�
n

i51

[(SRE
i
. t&REF

i
. t)]1�

n

i51

[(SRE
i
# t&REF

i
. t)]

, (6)

TABLE 2. Validation samples sizes as a function ofMRMSprecipitation types. A data point is classified in a particular precipitation type

when at least 80% of the time in space (0.088 grid) and time (30min) the same precipitation type is observed in all the MRMS pixels;

otherwise, it is classified as Comb category. ‘‘All rain’’ means a pixel has a precipitation rate. 0.01mmh21 in all three products (MRMS,

SCaMPR, and MWCOMB).

Precipitation type from MRMS

Precipitation type

(acronym used in study) MRMS (count) MRMS (%) All rain (count) All rain (%)

1 Convective Convec 3203 0.02 2927 0.41

2 Cool Stratiform Cool_Strat 4981 0.03 311 0.04

3 Hail Hail 228 0.00 224 0.03

4 Combined Type Data Comb 1 309 046 7.16 362 035 50.89

5 No Precipitation NoPrecip 1 6368 756 89.50 67 093 9.43

6 Snow Snow 153 0.00 7 0.00

7 Tropical/Convective Mix Trp_ConvMix 1325 0.01 1268 0.18

8 Tropical/Stratiform Mix Trp_StratMix 32 976 0.18 27 395 3.85

9 Warm Stratiform WarmStrat 567 702 3.10 250 213 35.17
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volumetric false alarm ratio ðVFAR)5
�
n

i51

[(SRE
i
. t&REF

i
# t)]

�
n

i51

[(SRE
i
. t&REF

i
. t)]1�

n

i51

[(SRE
i
. t&REF

i
# t)]

, (7)

where SRE is the satellite-based precipitation product

(i.e., MWCOMB or SCaMPR) andREF is the reference

precipitation, n is the validation sample size, and t is the

precipitation threshold above which VHI and VFAR

are computed.

For quantification, the following statistics are used:

correlation coefficient ðCC)5
�
n

i51

(REF
i
2REF)(SRE

i
2SRE)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
n

i51

(REF
i
2REF)2

s
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

(SRE
i
2SRE)2

s , (8)

root-mean-square error ðRMSE)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
ðSRE

i
2REF

i
)2

r
,

(9)

additive error5
1

n
�
n

i51

SRE
i
2REF

i
, (10)

FIG. 1. Simplified Köppen–Geiger climate map and locations of points near shore (represented

as ocean here).

TABLE 3. Validation sample size as a function of climate regions; ‘‘rain’’ and ‘‘no-rain’’ is according to MRMS and ‘‘all rain’’ is defined

as in Table 2.

ID Class description Total (count) Rain (count) No rain (count) All rain (count)

Proportion of

rain in region (%)

1 Ocean Not land 658 529 102 690 555 839 29 386 4.13

2 R1 Arid desert 317 662 31 685 285 977 5142 0.72

3 R2 Arid steppe 2 349 051 257 173 2 091 878 61 237 8.61

4 R3 Temperate, Mediterranean,

continental with warm summers

433 302 25 620 407 682 2509 0.35

5 R4 Temperate, oceanic, subtropical 4 183 360 716 997 3 466 363 229 237 32.22

6 R5 Warm summer continental,

continental

6 199 358 890 547 5 308 811 178 309 25.06

7 R6 Hot summer continental 4 147 108 683 441 3 463 667 205 653 28.91
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relative error ð%)5
�
n

i51

SRE
i
2REF

i

�
n

i51

REF
i

3 100: (11)

In addition to these statistics, the systematic and random

components of additive error are extracted. Following

Kirstetter et al. (2013), the systematic error is defined as

the median of the error while the random error is de-

fined as the interquantile range (10%–90%) of error.

3. Error budget analysis

a. Precipitation detection assessment

The categorical and volumetric statistics [Eqs. (1)–(7)]

for both SCaMPR andMWCOMB are given in Table 5

at a threshold of 0.01mmh21 and for various thresh-

olds in Fig. 2. MWCOMB and SCaMPR have similar

scores and dependencies on thresholds, but overall

MWCOMB has better scores compared to SCaMPR.

This is expected since PMW-based retrievals are

generally more accurate than IR-based ones. For

example, the POD for MWCOMB is higher than

SCaMPR and FAR is higher with SCaMPR. Both

products detect less than 50% of precipitation oc-

currence, and out of the detected precipitation, 34%

(44%) is falsely detected by MWCOMB (SCaMPR).

When considering the volume of precipitation with VHI

(Table 5), MWCOMB (SCaMPR) detects around 77%

(60%) of precipitation volume, and volumetric FAR is

only 23% (33%). These observations indicate that most

pixels with low precipitation rates are misclassified in

terms of rain versus no rain by both products. As the rain

rate threshold increases both products’ performances

decline (Fig. 2). At thresholds higher than 1mmh21

the SCaMPR FAR statistic follows more closely with

MWCOMB. This may be due to SCaMPR using a de-

tection threshold of 1mmh21 for separating raining

from nonraining pixels in the calibration process. The

major performance difference between SCaMPR and

MWCOMB is with POD. SCaMPR has weak perfor-

mances in detecting precipitation, which affects HSS. It

can be noted from Fig. 2 that POD and HSS increase

slightly as the threshold increases up to around 1mmh21

thendeteriorate for higher thresholds. FARmonotonically

increases with the threshold, with a higher rate of increase

after 1mmh21.

The impact of Prain (percent coverage of precipitating

pixels fromGV-MRMSwithin one grid cell ofMWCOMB)

on the detection performance ofMWCOMBandSCaMPR

is shown in Table 6 with POD for different Prain classes.

As Prain increases, POD also increases, which indicates

that the satellite products tend to miss pixels that are

partially covered with precipitation compared to pixels

completely covered by precipitation. Figure 3 summa-

rizes the distributions of Prain values for hits, misses,

false alarms, and correct rejections with box-and-whisker

plots. As expected,Prain is almost 0 for correct rejections

c and false alarms f for both satellite products, whereas

more than half of the pixels correctly detected are

completely filled with precipitation (median of Prain for

hits h is almost 1). For missed m precipitation, Prain ex-

hibits large variability for both satellite products. It

confirms that extreme cases (Prain 5 1 and Prain 5 0) are

well classified, but intermediate situations (Prain in the

TABLE 4. Validation sample size as a function of both precipitation types and climate regions.

Simplified Köppen–Geiger climate regions

Precipitation type from MRMS R1 R2 R3 R4 R5 R6 Ocean

Convec 13 331 0 760 716 1333 50

Cool_Strat 0 1005 2 0 3780 191 3

Hail 0 33 0 60 19 116 0

Comb 14 592 125 101 11 208 369 740 403 540 333 054 51 811

NoPrecip 298 472 2 170 739 418 151 3 691 179 5 562 769 3 642 966 584 480

Snow 0 96 0 0 56 1 0

Trp_ConvMix 0 40 0 801 44 267 173

Trp_StratMix 76 2034 1 16 058 3705 9159 1943

WarmStrat 4509 49 672 3940 104 762 224 729 160 021 20 069

TABLE 5. Categorical and volumetric statistics for SCaMPR and MWCOMB at threshold of 0.01mmh21.

h (%) m (%) f (%) c (%) POD FAR Bias HSS VHI VMI VFAR

MWCOMB 5.86 8.95 2.99 82.2 0.40 0.34 0.60 0.43 0.77 0.23 0.23

SCaMPR 5.33 9.48 4.27 80.93 0.36 0.44 0.65 0.36 0.60 0.40 0.33
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range [0–1]) are challenging to classify. This is attributed

to the interplay between coarse satellite sampling reso-

lution and edges of rain areas [nonuniform beam filling

(NUBF)] as highlighted in Kirstetter et al. (2012, 2013).

Note that the median of Prain for missed m precipi-

tation in slightly closer to 1 for SCaMPR compared to

MWCOMB, which indicates that SCaMPR tends to

miss precipitation with partially filled pixels to rela-

tively larger extent compared to MWCOMB. This

result is expected as MWCOMB is based on obser-

vations more directly related to surface precipitation

than SCaMPR.

Table 7 shows the distribution of hits and PODof both

satellite products as functions of precipitation type from

GV-MRMS. Note that GV-MRMS precipitation types

imply that GV-MRMS detects precipitation, thus only

detection hits are displayed here. Precipitation types

generally associated with high precipitation intensity,

such as Convective, Hail, and Tropical/Convective Mix

types are well detected (hit percent . 90) by both the

products, with SCaMPR detecting 100% of the raining

pixels classified as Hail. However, the Tropical/Stratiform

Mix type is better detected by MWCOMB (94.0%) than

by SCaMPR (85.9%). In MRMS, this precipitation type

tends to be associated collision–coalescence processes with

limited vertical extent and ice content, which makes it

more challenging to detect with IR and water vapor (WV)

channels than with microwave channels (Cecil and Zipser

2002). Clouds producing moderate precipitation rates and

with limited ice content and vertical extent are not as well

detected by satellite sensors. More than 50% of theWarm

Stratiform precipitation type is detected by both products

with SCaMPR detection performance (54%) lower than

MWCOMB (64%).

Cold environments are more challenging. The Cool

Stratiform type is observed to be poorly detected by

both products, with SCaMPR showing surprisingly bet-

ter detection rate (21%) than its calibrator MWCOMB

(10%). Similar observations are made with the Snow

type, with overall better detection with SCaMPR (23%)

than MWCOMB (9%). A possible explanation is that

surface emissivity affects microwave observations in the

range [10–37] GHz more significantly than infrared ob-

servations. Surface emissivity variability associated with

surface snow is particularly challenging for microwave

observations (e.g., Takbiri et al. 2019; Gebregiorgis et al.

2017). The Cool Stratiform category may be associated

with snow at the surface as suggested by (Chen et al. 2016).

Note that the limited observations of Snow type and the

influence of surface emissivity associated with cold surface

conditions (Zhang et al. 2016; Takbiri et al. 2019) merits

further investigation. Finally, Comb types (i.e., data points

where no precipitation type is greater than 80%) and No-

Precipitation (i.e., 80% of MWCOMB grid is zero precip-

itation but the mean GV-MRMS rain rate. 0.01mmh21)

are poorly detected by both products (hits , 50%).

Figure 4 reports the detection statistics for both

products across different climate regions as defined in

FIG. 2. Categorical statistics for SCaMPR and MWCOMB as a function of precipitation

threshold.

TABLE 6. POD as a function of Prain.

POD

Prain MWCOMB SCaMPR

0.0–0.2 0.15 0.16

0.2–0.4 0.19 0.19

0.4–0.6 0.23 0.21

0.6–0.8 0.27 0.25

0.8–1.0 0.32 0.3

JUNE 2020 UPADHYAYA ET AL . 1373

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/02/21 04:21 PM UTC



section 2. MWCOMB shows better detection perfor-

mance than SCaMPR across all climate regions, which

impacts the detected volumes of precipitation. Across

the mountainous region R3, both products show poor

performance. The detection of precipitation is low in

occurrence and volume for both the products with high

missed precipitation errors. This can be attributed to

orographic enhancement of rainfall as well as climatol-

ogy of the region where the Warm Stratiform precipi-

tation type is prominent and is poorly detected by both

products (Table 7). Challenges in detecting precipita-

tion in complex terrain from space have been well

documented (Derin et al. 2016; Golian et al. 2015;

Upadhyaya andRamsankaran 2018). Both products also

show lower precipitation detection over R5 (northern

and high-altitude regions). This can be attributed to the

climatology as R5 has high proportions of Snow and

Cool Stratiform precipitation types, which are detected

relatively poorly (Table 7). Note that SCaMPR POD

(0.32) is slightly better than MWCOMB (0.29), which

can again be attributed to the fact that Snow and Cool

Stratiform precipitation types are detected better by

SCaMPR than MWCOMB (Table 7). However, FAR is

relatively higher for SCaMPR (0.43) than MWCOMB

(0.27) which affects HSS.

The MWCOMB performance across arid regions R1

and R2 (Arid Desert and Arid Steppe, respectively) is

marked by more frequent missed precipitation than

false precipitation. However, when considering the

volume of rainfall, false errors dominate. In the case of

SCaMPR, errors due to missed precipitation (both by

occurrence and by volume) dominate the false error.

The performance of both products for the climate re-

gions R4 and R6 (Subtropical and Continental, re-

spectively) is relatively better than other regions and

reveal similar miss and false alarm errors. Overall, volu-

metric statistics show that both products have larger er-

rors across the western CONUS (R1, R2, and R3)

FIG. 3. Distribution of Prain of validation samples for hits h, missesm, false alarms f, and correct rejections c in both

tested products.

TABLE 7. MWCOMB and SCaMPR error decomposition of hits as functions of MRMS precipitation types.

MWCOMB SCaMPR

Precipitation type Hits pixels (count) POD (%) Hits pixels (count) POD (%)

Convection 3154 98.59 2960 92.53

Cool Stratiform 474 9.63 1038 21.1

Hail 224 98.25 228 100

Comb 536 438 42.15 494 540 38.86

No-Precip 134 440 16.23 140 940 17.02

Snow 9 5.88 35 22.88

Tropical Convection Mix 1304 98.42 1285 96.98

Tropical Stratiform Mix 30 961 94.02 28 292 85.92

Warm Stratiform 364 186 64.51 305 131 54.05
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compared to the eastern CONUS. There is a more sig-

nificant degradation in performance in SCaMPR going

from east to west. Along with orographically enhanced

rainfall, other possible reasons for this could be the re-

lated to the relatively shallow viewing angle of the ABI

over the western United States relative to the eastern

United States. This causes the satellite footprints to be-

come larger (coarser spatial resolution) and also increases

the optical pathlength of the absorbing atmosphere be-

tween the satellite and Earth as viewing zenith angle in-

creases, which results in lower brightness temperatures

known as limb cooling (Elmer et al. 2016). It is important

to highlight that the SCaMPR algorithm is trained at a

coarser spatial resolution of MWCOMB and applied at a

finer resolution of ABI/GOES-R, which could also ag-

gravate the error in SCaMPR compared to MWCOMB.

b. Precipitation quantification assessment

All the statistics reported in this section are calculated

based on the validation sample with ‘‘all rain’’ (where all

three products GV-MRMS, MWCOMB, and SCaMPR

have precipitation rates. 0.01mmh21). Figure 5 shows

FIG. 4. Categorical and volumetric statistics of MWCOMB and SCaMPR as a function of climate

regions. Note: For ease of interpreting table, the statistics scores are represented as bars.

FIG. 5. Precipitation distribution by occurrence (PDFc) and by volume (PDFv) for all the three

products.
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the precipitation density distribution by occurrence and

volume for all three products following Kirstetter et al.

(2012). Note that the lowest precipitation rate reported

by MWCOMB is 0.2mmh21. However, GV-MRMS

and especially SCaMPR report significant proportions

of precipitation rates , 0.2mmh21, and SCaMPR

largely over samples low precipitation rates compared

with GV-MRMS. These discrepancies can be traced

back to the design and the training of SCaMPR.While

SCaMPR is trained for precipitation detection with

MWCOMB rates greater than 1mmh21, it retrieves

rates lower than this threshold especially lower than

the MWCOMB threshold (0.2mmh21). This extrap-

olation outside of its training domain likely affects the

accuracy of the retrievals and mixes detection and

quantification of very light precipitation values.

This oversampling tendency of low precipitation rates

in SCaMPR (Fig. 5) comes along with high occurrence

of false alarms observed in SCaMPR in comparison to

false precipitation by volume. It is important to highlight

here that the primary application of short-fuse satellite

rainfall products such as SCaMPR is for heavy rain/flash

flood situations and not for climate applications where

light rain and drizzle become much more important.

Precipitation density by occurrence consistently peaks

around 3–5mmh21 for all three products. However,

maximum contributions by volume occur at higher

precipitation rates (.5mmh21). The MWCOMB pre-

cipitation density distribution by volume is shifted to-

ward higher rates compared to the reference. The

SCaMPR precipitation density distribution is shifted

toward lower rates compared to GV-MRMS, indicat-

ing overestimation by MWCOMB and underestima-

tion by SCaMPR.

Figure 6 shows the density scatterplots and Table 8

reports the quantitative metrics for MWCOMB and

SCaMPR compared to theGV-MRMS reference. There

are discontinuities in theMWCOMB scatter density plot

due to a minimum data resolution of 0.2mmh21. As

expected, MWCOMB displays a higher correlation than

SCaMPR. This is attributed to the more direct relation

between microwave measurements and surface precip-

itation than with IR or water vapor channels. However,

in terms of overall error, MWCOMB overestimates by

36% and SCaMPR underestimates by 22% (Table 8).

More details can be observed from Fig. 6 such as the

tendency for MWCOMB to overestimate the higher

rainfall rates while SCaMPR underestimates the lightest

rainfall rates, corroborating early results in Fig. 5. It

is interesting to note that the RMSE for SCaMPR is

slightly improved compared to MWCOMB. It may be

due to the postprocessing RH adjustment in SCaMPR.

Further error decomposition into systematic and ran-

dom components and studying the relative error as a

function of the reference rainfall rates should reveal

more details about quantitative error characteristics of

both the products.

Figure 7 shows the density scatterplot of additive error

as a function of GV-MRMS precipitation rates. The

corresponding systematic (median) and random com-

ponents (90%–10% quantile) of the additive error are

extracted. Table 9 reports the relative error (%) for both

the products as a function of precipitation rates. Both

products tend to overestimate lower precipitation rates

FIG. 6. Density colored scatterplot of (a) MWCOMB and (b) SCaMPR against reference GV-MRMS

precipitation rates.

TABLE 8. Quantitative statistics for MWCOMB and SCaMPR.

MWCOMB SCaMPR

CC 0.38 0.32

RMSE 6.58 5.63

Additive error 1.27 20.82

Relative error (%) 35.31 222.83
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and underestimate higher precipitation rates. MWCOMB

underestimates precipitation rates greater than 7.5mmh21

whereas SCaMPR starts to underestimate at lower

precipitation rates (5mmh21). As discussed earlier, the

overestimation of lowprecipitation intensity (,0.2mmh21)

is attributed to the lower threshold on MWCOMB rates

used for SCaMPR training (1mmh21) that propagates into

SCaMPR. Conversely, a 50mmh21 cap is applied in

MWCOMB and causes both products to underestimate

precipitation rates greater than 50mmh21. Kuligowski

et al. (2016) identified such quantification error charac-

teristics in the earlier version of SCaMPR and attributed

them to the algorithm structure (mean-square-error

minimization of linear regression models). In the

newer SCaMPR version for GOES-R a histogram

matching method is adopted to overcome this limita-

tion. However, our error budget analysis indicates

that the error trend remains. It is attributed therefore

to the training with MWCOMB.

It is also interesting to note that the relative error in

SCaMPR is significantly less than MWCOMB for

precipitation rates less than 5mmh21 (Table 9 and

Figs. 7a,b). Also, SCaMPR displays a slightly higher

systematic error compared toMWCOMBwhich is the

result of underestimation (from Figs. 7c and 7d).

MWCOMB shows higher random error than SCaMPR.

This surprising reduction in the random error and less

relative error for low intensity precipitation rates

in SCaMPR compared to its own training product

MWCOMB could possibly be due to post processing,

i.e., relative humidity correction in SCaMPR algorithm.

Overall, the error similarities of both products highlight

that a major portion of SCaMPR error originates from

its training reference MWCOMB.

Table 10 shows the quantitative statistics as a function

of precipitation type. Overall, the trend in both products

is very similar for different precipitation types with

some exceptions, again highlighting the propagation

of MWCOMB errors in SCaMPR retrievals. Both

products show the lowest correlation for Hail precipi-

tation type whereas for other high-intensity precipita-

tion types (i.e., Convective and Tropical/Convective

Mix) the correlation coefficient (CC) of SCaMPR is

slightly higher than that of MWCOMB. This supports

the fact that IR measurements have a stronger rela-

tionship with surface precipitation from convective

precipitation systems (Ba and Gruber 2001), whereas

stratiform precipitation types such as cool stratiform,

FIG. 7. Additive error scatterplot of (a) MWCOMB and (b) SCaMPR vs GV-MRMS, (c) error quantiles for

MWCOMB and SCaMPR, and (d) random and systematic additive error for MWCOMB and SCaMPR.

TABLE 9. Relative error (%) for MWCOMB and SCaMPR as a

function of GV-MRMS precipitation rates.

MRMS (mmh21) MWCOMB SCaMPR

0.01–0.25 2779.07 1835.65

0.25–5 109.6 19.21

5–7.5 9.93 243.03

7.5–10 211.97 252.13

10–25 232.6 261.96

25–50 247.24 268.55

50–100 271.28 279.58

JUNE 2020 UPADHYAYA ET AL . 1377

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/02/21 04:21 PM UTC



warm stratiform, tropical stratiform/mix have CCs less

than 0.2. Generally, RMSEs for both products are similar

and highest for heavy precipitation types such as Hail,

Convective, and Tropical/Convective Mix, which can be

explained by the higher spatial and temporal variability

associated with these types. Note that Snow type is not

reported due to small sample size (Table 2).

In terms of error characteristics, MWCOMB overes-

timates Warm Stratiform and Comb precipitation types

and underestimates other precipitation types, whereas

SCaMPR underestimates all precipitation types. The

general overestimation observed with MWCOMB can

be attributed to retrievals in Warm Stratiform and

Comb precipitation types, since the majority of data

points fall in these two categories. The underestima-

tion by SCaMPR for precipitation types associated

with high-intensity precipitation such as Convective,

Hail, Tropical/Convective Mix is significantly larger

thanMWCOMB. Again, this could be due to MWCOMB

underestimation that propagates into SCaMPR and is ag-

gravated as a result of the SCaMPR algorithm structure. It

is interesting to note that both the products detect Hail

with POD. 80%, however the quantification statistics

are poor (note: the sample is small and needs further

investigation). Also, in comparison to MWCOMB,

SCaMPR exhibits better scores from most quantitative

and detection statistics for Tropical/StratiformMix and

Tropical/Convective Mix, suggesting that SCaMPR

performs better in quantifying tropical precipitation

types than MWCOMB.

Figure 8 reports the quantitative statistics across dif-

ferent climate regions. With few exceptions, the trends

in the region-based statistics are similar to the overall

statistics; i.e., the CC of MWCOMB is slightly higher

than SCaMPR, RMSE of SCaMPR is slightly lower than

MWCOMB, and overestimation in MWCOMB and

underestimation in SCaMPR. There is no significant

performance difference in quantitative statistics across

the regions except for the complex terrain regionR3where

both products have poor CC and SCaMPR overestimates

precipitation rates. As described earlier, the complex

terrain region has issues with both detection and quan-

tification from space-based passive sensors and several

attempts have been made to improve space-based pre-

cipitation retrieval over complex topography (Taniguchi

et al. 2013; Upadhyaya and Ramsankaran 2016; Vicente

et al. 2002). It is interesting to note that detection sta-

tistics indicate significant differences across climate re-

gions whereas the quantitative statistics reveal much less

sensitivity.

4. Summary and conclusions

Considering the recent progression in the spatial,

temporal and spectral resolution of new generation

geostationary satellites, the present study provides an

error budget analysis of the recently improved SCaMPR

precipitation rates from GOES-16 (Kuligowski et al.

2016) and of MWCOMB (Joyce et al. 2004), which is

used to calibrate it. TheMWCOMB product is based on

passive microwave data and is used as a calibrator for

several GEO-based products including SCaMPR. This

error budget work is part of an ongoing effort to explore

the potential of new generation GEO observations

to improve state-of-the-art precipitation estimation from

space, and ultimately to provide seamless, high-resolution

TABLE 10. Quantitative statistics of MWCOMB (MW) and SCaMPR (SC) as a function of precipitation types.

Precipitation type

CC RMSE (mmh21)

Additive error

(mmh21) Relative error (%)

MW SC MW SC MW SC MW SC

Convec 0.28 0.31 12.17 14.21 22.66 29.86 216.27 260.34

Cool_Strat 0.25 0.22 2.16 2.35 20.6 21.18 223.63 246.74

Hail 20.03 20.01 17.39 24.12 25.34 221.05 214.13 255.71

Comb 0.42 0.36 7.31 6.55 0.82 21.46 17.67 231.5

NoPrecip 0.04 0.05 4.87 3.59 2.79 1.91 1445.57 987.28

Trp_ConvMix 0.12 0.29 26.12 28.33 219.07 223.49 262.36 276.79

Trp_StratMix 0.03 0.13 5.56 4.99 20.36 22.38 26.73 244.25

WarmStrat 0.18 0.11 5.54 3.86 1.87 20.23 73.25 29.06

FIG. 8. Quantitative statistics of MWCOMB (MW) and SCaMPR

(SC) as a function of climate regions. For ease of interpreting

table, the statistics scores are represented as bars.
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and low-latency precipitation estimates across the

CONUS and beyond. In this study, the GV-MRMS

data provided by Kirstetter et al. (2012, 2014) are used

as a reference. The investigation is carried out across the

CONUS for the summer season (June–September) of

2018. To understand the impact of different climatic

characteristics on the spatial distribution of errors

across the region, the error budgets of SCaMPR and

MWCOMB are analyzed for different precipitation

types from GV-MRMS and across Köppen–Geiger

climate regions. Overall MWCOMB shows better

evaluation scores than SCaMPR. The specific con-

clusions from the study are summarized as follows.

a. Precipitation detection

d The training data used for SCaMPR (MWCOMB)

detect only 40% of MRMS precipitating data points,

which propagates to SCaMPR and limits its precipi-

tation detection to only 36%.
d The satellite products tend to miss pixels partially

covered with precipitation compared to pixels com-

pletely covered by precipitation, which is attributed to

the interplay between coarse satellite sampling resolu-

tion and edges of rain areas (nonuniform beam filling

effect) as highlighted in Kirstetter et al. (2012, 2013)
d Precipitation types generally associated with high

precipitation intensity, such as Convective, Hail, and

Tropical/ConvectiveMix types are well detected by both

products compared to other precipitation types such as

Warm Stratiform, Cool Stratiform, Tropical/Stratiform

Mix, and Snow. In particular, 90% of Cool Stratiform is

missed by MWCOMB, which again propagates into

the accuracy of SCaMPR precipitation detection.
d Detection scores based on volume show that both

products have larger errors across the western CONUS

compared to the eastern CONUS, and particularly in

SCaMPR there is significant reduction in performance

going from east to west. This can be attributed mainly to

complex topography of the region and orographic

enhancement of rainfall. For SCaMPR, the coarser

resolution of the ABI sensor from GOES-16 across

the western CONUS might have played a role in

increasing the errors, along with the effects of longer

optical pathlengths at shallower viewing angles and

associated impacts on cloud-top temperatures.

b. Precipitation quantification

d As expected, MWCOMB exhibits a higher correlation

with the reference rainfall product than SCaMPR.

This is attributed to the more direct relation between

microwave measurements and surface precipitation

than with IR/WV satellite observations.

d MWCOMB has a general tendency to overestimate

the precipitation rates whereas SCaMPR underesti-

mates. However, both products tend to overestimate

lower precipitation rates and underestimate higher

precipitation rates, which is propagated to SCaMPR

from MWCOMB.
d Underestimation by SCaMPR for precipitation types

associated with high-intensity precipitation such as

Convective, Hail, Tropical/Convective Mix is signifi-

cantly larger than MWCOMB. This could mainly be a

consequence of initial underestimation in MWCOMB

that propagates to SCaMPR and is aggravated as a

result of the structure of SCaMPR.
d There are strong similarities in the error models of

both the products with SCaMPR displaying higher

systematic error than MWCOMB and MWCOMB

displaying higher random error than SCaMPR. This

surprising reduction in the random error in SCaMPR

compared to its own training product MWCOMB

could possibly be due to postprocessing; i.e., RH

adjustment of rain rates for subcloud evaporation in

the SCaMPR algorithm.
d Analyzing the quantification accuracy by precipitation

type also shows similar performance by both products.

The quantification of precipitation in Hail and other

stratiform types such as Warm Stratiform, Cool

Stratiform, and Tropical/StratiformMix is poor com-

pared to Convective and Tropical/Convective Mix.
d As opposed to the detection scores, analyzing quan-

tification accuracy across climate regions showed no

significant performance difference across the regions

except for the complex terrain region R3 where both

the products display poor CC.

In summary, the error characteristics of SCaMPR and

MWCOMB are very similar although some exceptions

exist. Note that the error scores observed in this study

for both the products are similar to the accuracy of other

satellite precipitation products (e.g., Kuligowski et al.

2016; Kirstetter et al. 2018). The challenge starts at the

initial stage where poor detection using PMW estimates

limits the detection capability of IR estimates that are

calibrated using them. Furthermore, in the quantification

stage the limitations of PMW estimates are propagated

to SCaMPR, with challenges over complex terrain re-

gions and cold environments. Thus, the major portion of

error in the SCaMPR IR estimates is propagated from

the MWCOMB reference product. Furthermore, the

SCaMPR algorithm is calibrated at coarser resolution

than MWCOMB and applied at the higher resolution of

the ABI IR data. These results suggest that the potential

of high-resolution ABI data used in SCaMPR remain

underutilized due to consideration of coarser-scale data
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as reference. It is also important to highlight that the

classification of precipitation types in SCaMPR is not

directly based on retrieved cloud properties but on ob-

served changes in the relationship between the IR bright-

ness temperature and the PMW rain rate as a function of

different GOES IR parameters (Kuligowski et al. 2016).

In the future, we propose to utilize high-resolution,

quality-controlled GV-MRMS precipitation rates and

precipitation type products to guide the precipitation

classification and quantification of an improved SCaMPR

algorithm over the CONUS and surrounding regions.
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